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ABSTRACT

Thisfield study, sponsored by the Maryland Power Plant Research Program, was
conducted to increase our understanding of the retention and movement of major ions and
trace elementsin forested watersheds. Atmospheric inputs (precipitation and throughfall)
and stream water export of major ions, trace metals, and mercury from a completely
forested watershed in western Maryland were measured from June 1996 through May
1997. Results were used to estimate major ion, trace metal, and mercury export; examine
regional patternsin wet deposition and canopy-atmosphere interactions; and compute
input-output budgets for HCWS.

Results indicate that HCWS: receives some of the highest atmospheric inputs of H*,
NH;", NOs and SO,” in the eastern U.S.; isanet sink for H, NH,", NOs and K*; and is
exhibiting signs of N saturation. A strong regional gradient in wet deposition of many
trace elements was observed (e.g., wet deposition was highest in western Maryland,
intermediate in central Maryland, and lowest near the East Coast). This pattern reflects
both closer proximity to regional sources and higher precipitation rates in the Allegheny
Plateau.

The forest canopy has little effect on the deposition of Al, As, and Pb; however, the
canopy was a net source of Mn, Fe, Cu, Zn, and Se. Input-output budgets suggest that
atmospheric inputs of Al equaled stream water outputs; 50-90% of the atmospheric inputs
of Pb, As, and Se were retained in HCWS; 25% of the atmospheric inputs of Fe, Cu and
Cr were retained; and HCWS is anet source of Zn, Ni and Cd.

Wet deposition flux of Hg to western Maryland is similar to that of other rura sitesin
Maryland; variability between sites and yearsis largely afunction of differencesin
rainfall amounts. The concentration of total Hg in precipitation did not correlate strongly
with any other major ions or trace elements, suggesting that no particular source profile
predominates. Comparable to other forested watersheds, the yield of Hg from the stream
islow, suggesting a buildup of Hg in sails.
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EXECUTIVE SUMMARY

The Maryland Power Plant Research Program (PPRP) sponsored this study, the Western Maryland
Atmospheric Deposition Study, to extend the spatial coverage of wet deposition data to the western
portion of the Chesapeake Bay watershed. The three primary goals of this project were to:

» Determine spatia variability in major ions and metals deposition across the watershed, using existing
data for the Piedmont Region and Coastal Plain available from the literature, and new data collected
during the field portion of the current study;

» Estimate total wet deposition of major ions and selected trace elements to the Bay and its tributary
regions using data sets devel oped for each region; and

» Determine the relationship between precipitation inputs to a forested watershed in western Maryland
and annual stream water export of these same trace elements.

The project was a cooperative effort sponsored by PPRP and conducted by researchers from the
University of Maryland Center for Environmenta Science Appalachian Laboratory (AL) and Chesapeake
Biological Laboratory (CBL); and from the University of Delaware College of Marine Studies (UDEL).

The goal of this portion of the study as reported here was to increase our understanding of the retention
and movement of major ions and trace elements in forested watersheds. To accomplish our goal, we
measured atmospheric inputs (precipitation and throughfall) and stream water export of magjor ions, trace
metals and mercury from a completely forested watershed in western Maryland from June 1996 through
May 1997. Precipitation was measured on a daily basis at the Piney Dam in Garrett County, Maryland.
Throughfall and stream water chemistry were measured on a weekly basis at an unnamed tributary to
Herrington Creek in the Herrington Creek Watershed (HCWS). Continuous stream water discharge from
HCWS was used with our stream chemistry data to estimate major ion, trace metal and mercury export
from HCWS. These data were used to examine regional patterns in wet deposition, canopy-atmosphere
interactions, and to compute input-output budgets for HCWS.

Wet deposition was an important source of major ions, trace elements and mercury. Among the major
ions, H" (728 eq ha™* yr?), SO,2 (562 eg ha® yr), NOs (312 eq ha yr™), and NH," (170 eq ha* yr*) had
the highest annual wet deposition rates, which are similar to those reported for other high deposition sites
in the northeastern United States. For the trace metals, Al, Fe and Zn had the highest wet deposition rates
(3000-11000 pg m? yr'"); Cr, Cu, Mn, Ni, Pb and Se had intermediate rates (200-800 pg m* yr): and Cd
and As had the lowest rates (~100 pg m yr''). Annual wet deposition of total mercury was 14.9 pg m’
yr'fand wet deposition of methylmercury was less than 1% of the total mercury deposition.

The forest canopy had a major effect on most major ions (K*, Ca?, Mg, SO,?, and NOs) and one trace
metal (Mn); some effect on afew trace elements (Fe, Ni, Zn, Cd, Cr, Cu, Se); and little to no effect on a
few major ions (Na" and NH,"), trace elements (Al, As and Pb) and total mercury. On an annua basis,
the forest canopy consumed 20% of the free acidity in incident precipitation, had no net effect on Na" and
NH," deposition, and was a strong net source of K*, Ca*?, Mg, SO4% NOs and Mn. The enhanced (1.5
to 60 times greater than wet deposition) throughfall of these ions was due to canopy exchange reactions
and leaching of dry deposited gases and particles. For trace metdss, the canopy was a small net source of
Fe, Cu, Zn, and Se; throughfall deposition rates were 30 to 50% greater than wet deposition, and were
consistent with expected dry deposition rates. In contrast, the canopy was a net sink for Ni, Cd, and Cr.
For mercury, annual throughfall deposition rates for total mercury were about 30% greater than wet
deposition rates. We assume thisis due to the wash-off of dry deposited material.
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On an annual basis, HCWS retained essentially all of the throughfall inputs of H" and NH,", about 35% of
the throughfall inputs of K* and NOs', and was a net source of SO4?, Cl°, Ca?, Mg, and Na*. Export of
these ions was 2 to 5 times greater than the throughfall inputs. For the trace metals, atmospheric inputs
equal stream water outputs of Al and Mn, inputs are 2 to 3 times lower than outputs for Zn, Ni, and Cd,
and the watershed is a net sink for Fe, As, Cu, Pb, Se, and Cr. From among the elements (Fe, As, Cu, Pb,
Se and Cr), Ph, As and Se are most strongly retained in the HCWS, representing a 50 to 90% retention of
the atmospheric input. For Fe and Cu and Cr, only about 25 % of the atmospheric input is retained by
HCWS. For mercury, about 80% of the atmospheric input was retained by the watershed.
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